Mitochondrial mediated thimerosal-induced apoptosis in a human neuroblastoma cell line (SK-N-SH).
نویسندگان
چکیده
Environmental exposure to mercurials continues to be a public health issue due to their deleterious effects on immune, renal and neurological function. Recently the safety of thimerosal, an ethyl mercury-containing preservative used in vaccines, has been questioned due to exposure of infants during immunization. Mercurials have been reported to cause apoptosis in cultured neurons; however, the signaling pathways resulting in cell death have not been well characterized. Therefore, the objective of this study was to identify the mode of cell death in an in vitro model of thimerosal-induced neurotoxicity, and more specifically, to elucidate signaling pathways which might serve as pharmacological targets. Within 2 h of thimerosal exposure (5 microM) to the human neuroblastoma cell line, SK-N-SH, morphological changes, including membrane alterations and cell shrinkage, were observed. Cell viability, assessed by measurement of lactate dehydrogenase (LDH) activity in the medium, as well as the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay, showed a time- and concentration-dependent decrease in cell survival upon thimerosal exposure. In cells treated for 24 h with thimerosal, fluorescence microscopy indicated cells undergoing both apoptosis and oncosis/necrosis. To identify the apoptotic pathway associated with thimerosal-mediated cell death, we first evaluated the mitochondrial cascade, as both inorganic and organic mercurials have been reported to accumulate in the organelle. Cytochrome c was shown to leak from the mitochondria, followed by caspase 9 cleavage within 8 h of treatment. In addition, poly(ADP-ribose) polymerase (PARP) was cleaved to form a 85 kDa fragment following maximal caspase 3 activation at 24 h. Taken together these findings suggest deleterious effects on the cytoarchitecture by thimerosal and initiation of mitochondrial-mediated apoptosis.
منابع مشابه
Involvement of Mu Opioid Receptor Signaling in The Protective Effect of Opioid against 6-Hydroxydopamine-Induced SH-SY5Y Human Neuroblastoma Cells Apoptosis
Introduction: The neuroprotective role of opioid morphine against 6-hydroxydopamineinduced cell death has been demonstrated. However, the exact mechanism(s) underlying such neuroprotection, especially the role of subtype receptors, has not yet been fully clarified. Methods: Here, we investigated the effects of different opioid agonists on 6-OHDA-induced neurotoxicity in human neuroblastoma...
متن کاملThe Effects of Boswellia Resin Extract on Dopaminergic Cell line, SK-N-SH, against MPP+-Induced Neurotoxicity
Introduction: Oxidative stress and neuroinflammation are involved in neurodegeneration procedure in Parkinson’s disease. Recently, neuroprotective potential of Boswellia resin has been demonstrated. Therefore, this study examined whether administration of Boswellia resin would attenuate MPP+- induced neuronal death in SK-N-SH- cell line, a human dopaminergic neurons- in vitro. Methods: Boswelli...
متن کاملMorroniside protects SK-N-SH human neuroblastoma cells against H2O2-induced damage
Oxidative stress-induced cell injury has been linked to the pathogenesis of neurodegenerative disorders such as spinal cord injury, Parkinson's disease, and multiple sclerosis. Morroniside is an antioxidant derived from the Chinese herb Shan-Zhu-Yu. The present study investigated the neuroprotective effect of morroniside against hydrogen peroxide (H2O2)-induced cell death in SK-N-SH human neuro...
متن کاملLithocholic bile acid selectively kills neuroblastoma cells, while sparing normal neuronal cells
Aging is one of the major risk factors of cancer. The onset of cancer can be postponed by pharmacological and dietary anti-aging interventions. We recently found in yeast cellular models of aging that lithocholic acid (LCA) extends longevity. Here we show that, at concentrations that are not cytotoxic to primary cultures of human neurons, LCA kills the neuroblastoma (NB) cell lines BE(2)-m17, S...
متن کاملAcetaminophen Induces Human Neuroblastoma Cell Death through NFKB Activation
Neuroblastoma resistance to apoptosis may contribute to the aggressive behavior of this tumor. Therefore, it would be relevant to activate endogenous cellular death mechanisms as a way to improve neuroblastoma therapy. We used the neuroblastoma SH-SY5Y cell line as a model to study the mechanisms involved in acetaminophen (AAP)-mediated toxicity by measuring CYP2E1 enzymatic activity, NFkB p65 ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neurotoxicology
دوره 26 3 شماره
صفحات -
تاریخ انتشار 2005